欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > Umeå University計算機科學方向博士后職位招聘

關(guān)注微信

Umeå University計算機科學方向博士后職位招聘

時間:2020-03-27來源:中國博士人才網(wǎng) 作者:佚名

 Umeå University計算機科學方向博士后職位招聘

  Umeå University, the Department of Computing Science, is seeking candidates for a postdoc position in resource-frugal federated learning for preserving security and privacy with focus on edge infrastructures. Deadline for application is April 20, 2020.

  Project description and working tasksThe rapid increase of autonomous systems and applications are providing challenges in dealing with petabytes of data. These size and multidimensional features make the machine learning models larger and more complex. Classical centralized approaches to learning and inference fail to address the problems of resource and storage limitations, network bandwidth constraints, tail latency, energy-efficiency, and many more. This project focuses on design and implementation of resource-frugal and robust federated learning algorithms for preserving security and privacy, which are ideally suited for big-data and edge infrastructures.This project leverages federated learning techniques for advancing state-of-the-art machine learning algorithms where data is geographically distributed and sensitive. Federated learning algorithms empower large-scale distributed nodes, i.e., mobile devices to train globally shared models without divulging the privacy of raw data. Sophisticated attackers leverage the limitations of data, model, target class(es), resources, the communication path for the deception of federated learning algorithms and also to violate security and privacy. By creating unique features (e.g., decentralized optimization, heterogeneity, cost-effective communication architecture, model agnostic learning and robustness) of federated learning algorithms, this project addresses the problems of limited resources, computation, communication, and energy-efficiency for preserving security and privacy. As a result, these features improve the safeguard of services and diagnosis ability of edge infrastructures.In addition to own research, the selected candidate is expected to contribute towards the local research community by actively participating in the departmental and group research activities such as workshops, seminars, etc. These contributions can be within distributed systems research group, but collaboration with researchers in, e.g., machine learning, mathematical statistics, optimization, deep learning, trustworthy learning or artificial intelligence is expected. (For further information, see www.cloudresearch.org).

  Terms of employmentThe appointment is for two years full-time employment. Postdocs are typically offered the opportunity to gain teaching experience on suitable undergraduate courses. Expected starting date is August  1, 2020 or as otherwise agreed.QualificationsApplicants must have earned a PhD or a foreign degree that is deemed equivalent to a PhD in Artificial Intelligence, Machine Learning, Computer Science or a subject relevant for the position. The PhD degree should not be more than three years old by the application deadline, unless special circumstances exist.Candidates are expected to have outstanding knowledge of machine learning techniques (preferably federated learning and trustworthy learning). Demonstrable knowledge of data privacy, data wrangling, deep learning, threats to machine learning, security and performance anomalies is a prerequisite. In particular, candidates should be well acquainted with modelling and implementing decentralized learning models to ensure security and privacy when data is geographically distributed and sensitive.Since research is conducted in an international research environment, ability to work as well independently as to collaborate and contribute to teamwork are required. Very good command of the English language, both written and spoken, are key requirements.We particularly invite female candidates to apply to ensure gender balance.

  For information about how to apply, follow the Online Application Link

  Further information about the position can be obtained from Assistant Professor Monowar Bhuyan, (email: monowar@cs.umu.se) and Professor Erik Elmroth (email: elmroth@cs.umu.se).

為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標題格式:應聘職位名稱+姓名+學歷+專業(yè)+中國博士人才網(wǎng))

中國-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點或證實其內(nèi)容的真實性,文章內(nèi)容僅供參考。

欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          国内精品在线播放| 国产日韩欧美综合在线| 美女网站一区二区| 亚洲电影一区二区| 一区二区三区中文免费| 中文字幕在线不卡一区| 国产精品理伦片| 国产欧美日韩一区二区三区在线观看| 久久综合色综合88| 久久女同精品一区二区| 国产亚洲欧美在线| 欧美激情综合五月色丁香 | 91在线免费看| 91美女在线观看| 在线精品视频免费观看| 欧美自拍偷拍一区| 欧美精品久久天天躁| 欧美一区二区三区爱爱| 精品成a人在线观看| 2023国产一二三区日本精品2022| 久久九九久精品国产免费直播| 中文在线资源观看网站视频免费不卡| 国产精品久久久久精k8| 亚洲最新视频在线观看| 蜜桃视频在线一区| 成人一区二区三区视频| 一本一本大道香蕉久在线精品| 欧美天天综合网| 精品日本一线二线三线不卡| 久久久久久亚洲综合影院红桃| 国产精品免费av| 无吗不卡中文字幕| 国产精品一区二区三区99| 91女人视频在线观看| 91精品国产免费| 日韩一区日韩二区| 日本va欧美va欧美va精品| 国产91高潮流白浆在线麻豆| 色哟哟一区二区| 欧美精品一区二区三| 亚洲第一激情av| 成人网在线播放| 欧美一级视频精品观看| 亚洲日本韩国一区| 久久超级碰视频| 欧美三级视频在线| 中文字幕在线观看一区二区| 麻豆久久久久久| 色婷婷激情综合| 国产三区在线成人av| 日韩国产一二三区| 91麻豆成人久久精品二区三区| 欧美成人一区二区三区在线观看| 亚洲美女淫视频| 丰满放荡岳乱妇91ww| 欧美大片一区二区| 天天操天天干天天综合网| 成人视屏免费看| 欧美大片日本大片免费观看| 亚洲黄网站在线观看| 成人激情综合网站| 国产性天天综合网| 激情综合五月天| 日韩午夜小视频| 亚洲1区2区3区4区| 91国偷自产一区二区三区观看| 中文字幕精品一区二区三区精品| 久久电影国产免费久久电影 | 一本色道久久综合精品竹菊| 久久久久久久一区| 久久99国产精品免费网站| 欧美日韩国产中文| 亚洲在线免费播放| 色综合天天综合在线视频| 日本一区二区成人| 国产精品1区2区3区| 欧美成人猛片aaaaaaa| 蜜臀91精品一区二区三区| 在线成人av影院| 视频一区二区三区中文字幕| 欧美亚日韩国产aⅴ精品中极品| 一区二区三区在线不卡| 91年精品国产| 亚洲欧美日韩国产中文在线| 91免费视频网址| 亚洲欧美日韩精品久久久久| 91网上在线视频| 亚洲综合在线免费观看| 在线亚洲免费视频| 午夜精品久久久久影视| 欧美一区二区三区四区久久| 久久精品免费看| 国产午夜精品久久久久久久| 成人综合日日夜夜| 亚洲精品免费播放| 欧美日韩在线一区二区| 奇米在线7777在线精品| 26uuu亚洲综合色| 成人av资源站| 亚洲一线二线三线视频| 91精品啪在线观看国产60岁| 精品亚洲免费视频| 国产精品网站导航| 91成人免费电影| 免费成人av在线播放| 国产拍欧美日韩视频二区| 91视视频在线观看入口直接观看www | 成人黄色在线视频| 综合欧美一区二区三区| 欧美日韩精品系列| 精品在线免费观看| 自拍偷自拍亚洲精品播放| 欧美日韩午夜在线| 国产一区二区成人久久免费影院| 国产精品夫妻自拍| 91精品在线麻豆| 成人小视频免费观看| 亚洲国产欧美日韩另类综合| 欧美成人精品二区三区99精品| 成人av资源站| 日韩不卡免费视频| 欧美极品aⅴ影院| 欧美日韩亚洲综合| 国产成人午夜电影网| 一区二区三区四区精品在线视频| 欧美xfplay| 欧美在线观看一区二区| 国产麻豆午夜三级精品| 亚洲精品乱码久久久久久久久| 欧美精品一区二区三区在线播放| 色婷婷av一区| 国产精品一区二区在线看| 亚洲国产另类av| 国产精品蜜臀在线观看| 日韩一区二区电影网| 一本色道久久综合亚洲aⅴ蜜桃| 久草热8精品视频在线观看| 亚洲尤物视频在线| 中文字幕一区二区三中文字幕| 日韩女优电影在线观看| 欧美三区在线观看| 99热在这里有精品免费| 国产一区不卡在线| 日本不卡中文字幕| 亚洲成人激情自拍| 亚洲激情自拍偷拍| 国产精品久久久久久久岛一牛影视 | 精品国产亚洲在线| 欧美日韩午夜影院| 色妹子一区二区| 成人黄页在线观看| 国产馆精品极品| 久久国产乱子精品免费女| 日韩精品免费专区| 亚洲主播在线观看| 亚洲精品自拍动漫在线| 最新久久zyz资源站| 国产精品亲子伦对白| 中文字幕免费在线观看视频一区| 久久精品男人天堂av| 精品sm在线观看| 精品福利在线导航| 精品久久久久久久久久久久久久久 | 国产91丝袜在线播放0| 国产一区二区精品久久99| 精品在线免费观看| 国产在线国偷精品免费看| 狠狠色狠狠色综合| 国产麻豆视频精品| 国产精品中文字幕日韩精品 | 精品少妇一区二区三区在线播放 | 亚洲免费观看高清完整版在线观看| 国产精品久久久久久久久果冻传媒| 亚洲国产精品激情在线观看| 国产精品美女久久久久久2018| 国产精品久久久久天堂| 亚洲欧美日韩国产另类专区| 亚洲男女毛片无遮挡| 亚洲一区二区在线视频| 五月婷婷综合在线| 蜜桃精品视频在线| 国产一区 二区 三区一级| 成人午夜精品在线| 一本一道久久a久久精品| 色天天综合色天天久久| 4438亚洲最大| 久久久久国产精品人| 中文字幕一区二区三区在线不卡| 亚洲一区免费在线观看| 奇米亚洲午夜久久精品| 国产成人免费高清| 色婷婷国产精品久久包臀| 欧美精品三级在线观看| 日韩欧美国产一区二区在线播放| 久久这里只有精品6| 亚洲品质自拍视频| 美国十次了思思久久精品导航| 国产精品正在播放| 91传媒视频在线播放| 精品久久久三级丝袜|