欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 瑞士蘇黎世大學生物醫(yī)學領域的機器學習博士后職位

關(guān)注微信

瑞士蘇黎世大學生物醫(yī)學領域的機器學習博士后職位

時間:2020-08-17來源:中國博士人才網(wǎng) 作者:佚名

瑞士蘇黎世大學生物醫(yī)學領域的機器學習博士后職位

Department of Quantitative Biomedicine

Postdoc Opening in Machine Learning in Biomedicine

The University of Zurich together with the University Hospital of Zurich are embarking on a concerted effort to develop informatics programs to advance biomedical research using cutting edge computational approaches. As part of these efforts, the Krauthammer research group investigates topics in clinical data science and translational bioinformatics, such as knowledge discovery from Big Data sources (Electronic Medical Record), development of Natural Language processing, information retrieval and extraction routines, as well as the analysis of human Omics data. The group is headed by Prof. Michael Krauthammer and is part of the Department of Quantitative Biomedicine (DQBM).

Your responsibilities

For this position, we are looking for motivated PostDoc candidates who are interested in applying their computational skills to medical as well as biological problems. An example of Machine Learning (ML) in biology is our latest work on genome editing tools (base editors) for basic research and gene therapy. We developed BE-DICT 1), an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy.

An example of ML in healthcare is our work on time series analysis for patient readmission prediction. In this work 2), we explored the systematic application of neural network models for predicting 30 days all-cause readmission after discharge from a HF hospitalization. And more recently, we are focused on the analysis of patient trajectories (i.e. using patients' medical history) and "patient similarities" (i.e. patient similarity assessment on longitudinal health data) for care pathway/knowledge discovery, and personalized outcome prediction 3). Our goal is to develop state-of-the- art approaches and build best-in-class methods to capitalize on digital clinical information to automatically compare, analyze and visualize complex longitudinal patient journeys focusing on the concept of patient journey similarity. This involves building decision support systems powered by predictive algorithms for guiding patient therapy across all disease stages, the assessment of treatment effects using counterfactual inference and the identification of causal mechanisms driving disease progression.

1) Marquart, K. F., Allam, A., et al. Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. bioRxiv 2020.07.05.186544 (2020) doi:10.1101/2020.07.05.186544.

2) Allam, A., Nagy, M., Thoma, G. & Krauthammer, M. Neural networks versus Logistic regression for 30 days all-cause readmission prediction. Sci. Rep. 9, 9277 (2019).

3) Allam, A., Dittberner, M., Sintsova, A., Brodbeck, D. & Krauthammer, M. Patient Similarity Analysis with Longitudinal Health Data. (2020). https:// arxiv.org/abs/2005.06630

Your profile

  PhD degree in computer science (focused on machine learning), optimization, statistics, applied math or closely related discipline.

  Strong publication record with at least one first-author paper in top-tier conferences (such as NeurIPS, ICML , AISTATS, AAAI, ICLR, etc.)

  Proficient in Python and the scientific computing stack (SciPy, Numpy, Scikit- learn, pandas)

  Proficient in one of the deep learning frameworks (PyTorch, Tensorflow)

What we offer

  Access to state-of-the-art infrastructure (computational resources), clinical datasets and medical expertise domain-knowledge (excellent medical doctors and research scientists)

  Ability to make a real and tangible impact in healthcare research

  Solve real-world problems and improve hospital-related process and workflow

  Stimulating research environment and a place to grow academically and professionally

  Outstanding working conditions at the University of Zurich.

Place of work

Zurich, Switzerland

Start of employment

Employment start date to be mutally agreed.

為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標題格式:應聘職位名稱+姓名+學歷+專業(yè)+中國博士人才網(wǎng))

中國-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點或證實其內(nèi)容的真實性,文章內(nèi)容僅供參考。

欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          91丝袜美女网| 狠狠色丁香久久婷婷综合丁香| 在线观看免费视频综合| 国产传媒一区在线| 激情综合五月婷婷| 久久超碰97中文字幕| 秋霞午夜av一区二区三区| 日韩av一区二| 激情综合色综合久久| 国产在线观看一区二区| 国产一区二区在线观看视频| 九一久久久久久| 国产一区亚洲一区| 国产99一区视频免费| 成人av在线观| 日本二三区不卡| 欧美群妇大交群中文字幕| 欧美一区二区三区小说| 2017欧美狠狠色| 国产精品久久久久久久久免费樱桃| 国产精品成人免费在线| 一区二区三区成人| 奇米一区二区三区| 风流少妇一区二区| 欧美特级限制片免费在线观看| 91精品午夜视频| 久久久国产精华| 一区二区三区四区中文字幕| 亚洲国产一区视频| 激情综合色综合久久| 99久久国产综合精品麻豆| 欧美日韩国产不卡| 国产日韩欧美a| 婷婷久久综合九色综合伊人色| 麻豆国产精品777777在线| 成人在线视频首页| 欧美精品色综合| 国产精品欧美综合在线| 午夜成人免费视频| 国产aⅴ综合色| 91精品国产麻豆国产自产在线| 日本一区二区不卡视频| 调教+趴+乳夹+国产+精品| 国产不卡视频在线播放| 欧美日韩国产123区| 国产精品嫩草影院com| 欧美a级理论片| 91啪在线观看| 久久久精品欧美丰满| 亚州成人在线电影| 99国产精品99久久久久久| 日韩一区二区三| 一区二区三区国产精品| 成人精品视频一区二区三区| 欧美一区二区三区视频在线| 亚洲免费观看高清完整版在线 | 亚洲自拍都市欧美小说| 国产东北露脸精品视频| 日韩一区二区电影网| 一区二区在线观看视频| 懂色av噜噜一区二区三区av| 在线播放中文一区| 亚洲精品免费在线| 成人深夜在线观看| 久久综合九色综合欧美98| 日本少妇一区二区| 欧美天堂一区二区三区| 亚洲人成网站影音先锋播放| 国产不卡视频一区二区三区| 日韩欧美色综合网站| 午夜精品国产更新| 欧美性做爰猛烈叫床潮| 亚洲色图在线播放| 99视频有精品| 中文字幕av一区二区三区免费看| 狠狠色丁香久久婷婷综| 欧美岛国在线观看| 免费观看91视频大全| 91精品国产综合久久小美女| 亚洲va天堂va国产va久| 精品视频一区三区九区| 亚洲成人av在线电影| 欧美在线一二三| 一区二区在线电影| 在线观看不卡视频| 亚洲福利视频三区| 欧美日本一区二区三区| 偷拍日韩校园综合在线| 制服丝袜亚洲播放| 精品写真视频在线观看| 久久久综合网站| 成人永久免费视频| 国产精品国产馆在线真实露脸| caoporm超碰国产精品| 亚洲日本欧美天堂| 欧美日韩在线电影| 看电视剧不卡顿的网站| 2019国产精品| 99re这里都是精品| 亚洲成av人片一区二区三区 | 日本aⅴ免费视频一区二区三区 | 国产福利不卡视频| 成人欧美一区二区三区白人 | 免费av网站大全久久| 精品国产乱码久久久久久免费| 国产伦精品一区二区三区免费| 久久久国产精华| 色菇凉天天综合网| 日韩激情中文字幕| 国产日产亚洲精品系列| 91在线免费看| 五月激情综合网| 国产欧美日韩综合精品一区二区| 91免费国产在线| 日本不卡视频在线观看| 日本一区二区三区视频视频| 欧美在线观看视频一区二区 | 欧美极品aⅴ影院| 91福利国产精品| 精品一区二区三区蜜桃| 亚洲视频一区二区免费在线观看 | 激情深爱一区二区| 亚洲欧美二区三区| 精品日产卡一卡二卡麻豆| av中文字幕亚洲| 日本不卡高清视频| 亚洲精品国产a| 国产午夜久久久久| 欧美日韩黄色影视| 91在线视频网址| 激情综合色播激情啊| 一区二区三区欧美激情| 欧美经典一区二区| 日韩女优电影在线观看| 色狠狠桃花综合| 成人一区二区在线观看| 裸体歌舞表演一区二区| 亚洲一区二区成人在线观看| 国产欧美一区二区三区鸳鸯浴| 欧美精品粉嫩高潮一区二区| 91啪亚洲精品| 不卡一区二区中文字幕| 国精产品一区一区三区mba视频 | 国产精品国产精品国产专区不片 | 国产成人在线视频网址| 日本美女一区二区| 香蕉加勒比综合久久| 亚洲人成在线播放网站岛国| xfplay精品久久| 欧美一区二区三区色| 精品视频123区在线观看| 91蜜桃在线观看| fc2成人免费人成在线观看播放| 狠狠狠色丁香婷婷综合久久五月| 日韩影视精彩在线| 午夜激情综合网| 午夜av区久久| 天天综合网天天综合色| 亚洲午夜影视影院在线观看| 一区二区三区在线不卡| 一区二区三区在线高清| 一区二区三区波多野结衣在线观看| **性色生活片久久毛片| 国产精品乱子久久久久| 国产精品伦理一区二区| 中文字幕日韩一区| 亚洲欧美偷拍卡通变态| 亚洲激情在线播放| 亚洲福利视频一区| 日日夜夜精品视频天天综合网| 午夜成人在线视频| 美女高潮久久久| 国产一区二区成人久久免费影院| 免费成人在线观看| 国产一区999| 9人人澡人人爽人人精品| 91免费视频网| 欧美日韩一区不卡| 日韩欧美精品在线| 国产欧美一区二区精品秋霞影院| 日本一区二区综合亚洲| 一区在线中文字幕| 亚洲精品乱码久久久久| 婷婷开心久久网| 国产美女娇喘av呻吟久久| 成人免费看片app下载| 色吊一区二区三区| 欧美一区二区三区免费大片| 国产日韩影视精品| 一区二区三区蜜桃网| 免费观看日韩电影| 春色校园综合激情亚洲| 欧美中文字幕一区| 久久人人爽人人爽| 亚洲六月丁香色婷婷综合久久| 午夜天堂影视香蕉久久| 国产盗摄一区二区三区| 欧美亚一区二区| 国产日韩欧美高清在线| 亚洲第一主播视频|