欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國(guó)博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 英國(guó)利茲大學(xué)2023年招聘博士后職位(選擇建模,機(jī)器學(xué)習(xí)和數(shù)學(xué)心理學(xué),3個(gè)職位)

關(guān)注微信

英國(guó)利茲大學(xué)2023年招聘博士后職位(選擇建模,機(jī)器學(xué)習(xí)和數(shù)學(xué)心理學(xué),3個(gè)職位)

時(shí)間:2023-09-05來(lái)源:中國(guó)博士人才網(wǎng) 作者:佚名

英國(guó)利茲大學(xué)2023年招聘博士后職位(選擇建模,機(jī)器學(xué)習(xí)和數(shù)學(xué)心理學(xué),3個(gè)職位)

利茲大學(xué)(University of Leeds),是一所位于英國(guó)利茲的公立綜合性研究型大學(xué)、世界百?gòu)?qiáng)名校,英國(guó)紅磚大學(xué),是羅素大學(xué)集團(tuán),世界大學(xué)聯(lián)盟、國(guó)際大學(xué)氣候聯(lián)盟、歐洲大學(xué)協(xié)會(huì)、英聯(lián)邦大學(xué)協(xié)會(huì)、中英大學(xué)工程教育與研究聯(lián)盟、RENKEI、N8大學(xué)聯(lián)盟、白玫瑰大學(xué)聯(lián)盟成員。利茲大學(xué)商學(xué)院獲AACSB、EQUIS和AMBA三重認(rèn)證,是全球商學(xué)院網(wǎng)絡(luò)、“一帶一路”商學(xué)院聯(lián)盟、中歐商校聯(lián)盟成員。

Research Fellow in Choice Modelling, Machine Learning and Mathematical Psychology (3 posts)

University of Leeds

Job Description

Do you have research expertise in Choice Modelling, Machine Learning and/or Mathematical Psychology? Are you interested in conducting methodological research to bridge these disciplines? Would you like to implement novel methodologies to advance the state-of-the-art in behavioural modelling and make a real-world impact?

Understanding the mechanisms and the drivers behind people’s choices has been the focal point of a range of academic disciplines and a key component in policy making, for example aiming to shift behaviours for a more sustainable future. Mathematical process models from psychology, behavioural econometric models and data-driven machine learning algorithms have been developed in parallel with only limited knowledge spillovers among them, but with the same core goal of understanding individual decision making.

Models from Mathematical Psychology focus on understanding the processes leading to decisions. These are often described as causal models aiming to answer how an individual reached a certain choice and understand the interrelated processes behind that. Those models, however, are rarely applied outside a controlled lab setting, with only a handful of real-world applications.

Algorithms and techniques from Machine Learning, initially originating from Computer Science, are steadily gaining ground in almost every discipline due to their ability to efficiently find patterns in complex data. These methods are mostly concerned with what the outcome is and seek to closely replicate the patterns that led to the observed choices. Nonetheless, the general lack of interpretability in their outputs hinder their more widespread adoption for policy making, where a more robust statistical association between the target and explanatory variables is required.

Finally, Choice Modelling is a field of econometrics that sits between the two aforementioned disciplines aiming to answer which factors influence the observed choices and to what extent, as well as what it would take to shift to a different choice. Choice models have been used extensively by policy makers and industry since the early theoretical advancements of 1970s. Despite their widespread use, however, these models are not able to provide clear links between the observed choices and the actual causal processes behind them as do models from Mathematical Psychology. Furthermore, they are arguably increasingly limited in their application to more complex data compared to Machine Learning algorithms, a theme that will continue to exacerbate with the advent of Big Data.

With this in mind, the synergy of those three disciplines and the development of new state-of-the-art modelling frameworks holds the promise of providing new Data-Driven Behavioural Models (DDBMs) combining the strengths and addressing the distinct limitations of the three areas. The development of DDBMs will come at a time when big data sources constantly challenge traditional modelling approaches. Additionally, the growth in human-machine interactions, such as with the advent of autonomous vehicles, will require the development of AI consistent with human behaviour to guarantee public safety and wider adoption in the market.

The Choice Modelling Centre at the Institute for Transport Studies seeks to hire an early career researcher to take part in the ERC-funded project “SYNERGY”. The project’s aim is to combine key techniques from Mathematical Psychology, Choice Modelling and Machine Learning, and help to develop new approaches. The role will involve working at the cutting edge of the three aforementioned areas of research for developing modelling frameworks that will actively shape future policy making. The successful candidate will need to demonstrate sufficient theoretical and technical knowledge of at least one of the three key disciplines involved in the project and possess an open mind to new ideas and approaches. Knowledge of a programming language, with an emphasis on R and/or Python, is also strongly advised.

As a member of the team, you will be based at the Institute for Transport Studies (ITS) where you will work with Professor Stephane Hess and other researchers in the Choice Modelling Centre (CMC), drawing also on expertise in its global network. You will become part of a highly productive team, have the opportunity to work with the technically advanced driving and pedestrian simulators of the University of Leeds and take part in international conferences for the purpose of disseminating the findings of the research. You are expected to contribute to methodological research on bridging choice modelling, mathematical psychology and machine learning in the context of transport, health and environment. As this is a multi-faceted research project, you will be able to contribute to individual components of the work as well as helping to shape the direction of the research according to your own interests and background. You will be expected to take academic ownership of large parts of the programme and make a lasting contribution to the field.

To explore the post further or for any queries you may have, please contact:

Stephane Hess, Professor of Choice Modelling, Director of the Choice Modelling Centre

Email: s.hess@leeds.ac.uk

為防止簡(jiǎn)歷投遞丟失請(qǐng)抄送一份至:boshijob@126.com(郵件標(biāo)題格式:應(yīng)聘職位名稱(chēng)+姓名+學(xué)歷+專(zhuān)業(yè)+中國(guó)博士人才網(wǎng))

中國(guó)-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來(lái)源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性,文章內(nèi)容僅供參考。

相關(guān)文章
欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          日本成人超碰在线观看| 综合色天天鬼久久鬼色| 欧美国产一区二区| 日本美女视频一区二区| 欧美变态口味重另类| 国产精品综合在线视频| 日韩一区日韩二区| 91猫先生在线| 奇米精品一区二区三区在线观看一| 精品国产精品网麻豆系列| 波多野洁衣一区| 日韩精品亚洲一区二区三区免费| 久久亚洲免费视频| 久久精品久久综合| 中文字幕一区av| 欧美精品自拍偷拍动漫精品| 国产美女一区二区| 亚洲风情在线资源站| 日韩精品在线网站| 91在线观看高清| 麻豆freexxxx性91精品| 国产精品色哟哟| 欧美一区二区三区在线观看视频| 丰满放荡岳乱妇91ww| 亚洲国产精品一区二区久久恐怖片 | 日韩中文欧美在线| 日韩欧美国产一区在线观看| 成人视屏免费看| 亚洲自拍偷拍九九九| 91精品国产综合久久福利| 成人精品视频一区二区三区 | 91免费在线看| 国产一区二区三区av电影| 国产日韩精品一区| 欧美高清视频在线高清观看mv色露露十八 | 欧美亚洲综合另类| 成人免费视频播放| 欧美成人性战久久| 91蜜桃视频在线| 美国精品在线观看| 亚洲午夜三级在线| 国产精品污www在线观看| 欧美一区二区视频在线观看2022| 国产在线播放一区| 亚洲成人av一区二区| 国产精品视频一二三区| 欧美日韩国产美| 一区二区三区在线播| 欧美精品一区二区在线播放| 一本久道久久综合中文字幕| 美女网站色91| 亚洲成人一二三| 国产精品乱子久久久久| 欧美三级三级三级| 99久久精品免费看| 国产成人午夜电影网| 国内精品伊人久久久久影院对白| 日韩精品1区2区3区| 欧美国产一区在线| 国产亚洲欧美日韩日本| 日韩欧美国产一区在线观看| 欧美久久久久久久久久| 欧洲精品一区二区| 岛国精品一区二区| 国产精品白丝jk黑袜喷水| 激情综合色综合久久| 麻豆91在线看| 麻豆精品久久久| 日韩av中文在线观看| 天天色 色综合| 亚洲成人av一区二区| 亚洲国产成人tv| 亚洲午夜一区二区三区| 亚洲一区二区三区在线播放| 一区二区三区日韩精品视频| 一区二区三区免费网站| 亚洲国产你懂的| 日本一区二区免费在线观看视频| 26uuu欧美日本| 日韩一区二区三区三四区视频在线观看| 欧美人妖巨大在线| 337p亚洲精品色噜噜| 91精品国产综合久久久久久漫画| 777午夜精品视频在线播放| 国产成人综合在线| 成人免费视频app| 成人免费三级在线| 99久久99久久精品免费观看 | 国产亚洲美州欧州综合国| 久久久精品人体av艺术| 中文字幕不卡三区| 国产三级精品在线| ...xxx性欧美| 亚洲一级不卡视频| 亚洲18女电影在线观看| 亚洲激情图片小说视频| 亚洲一区二区偷拍精品| 午夜激情久久久| 另类小说一区二区三区| 六月婷婷色综合| 国产精品中文字幕一区二区三区| 成人高清av在线| 91久久国产综合久久| 东方aⅴ免费观看久久av| 色综合久久88色综合天天| 欧美日本一区二区在线观看| 日韩美一区二区三区| 中文幕一区二区三区久久蜜桃| 一区二区三区在线播| 久久国产精品99久久人人澡| 成人精品gif动图一区| 欧美日韩国产高清一区| 久久久久久久久99精品| 亚洲精品免费一二三区| 久久精品久久久精品美女| 99热国产精品| 日韩美一区二区三区| 亚洲欧洲www| 日韩精品久久理论片| 成人黄色电影在线 | 国产精品一区不卡| 欧美在线三级电影| 国产性天天综合网| 香蕉成人伊视频在线观看| 国产成人精品www牛牛影视| 欧美日韩亚洲国产综合| 国产精品拍天天在线| 日本成人在线电影网| 91免费观看国产| 亚洲精品一区二区三区蜜桃下载| 一区二区三区精密机械公司| 国产精品一区专区| 在线不卡a资源高清| 一区在线观看视频| 国产精品自拍网站| 91精品麻豆日日躁夜夜躁| 国产精品美女久久久久久2018| 日本美女一区二区三区| 91福利国产精品| 国产欧美一区二区三区沐欲| 日本大胆欧美人术艺术动态| 色综合久久综合中文综合网| 久久欧美一区二区| 奇米影视7777精品一区二区| 欧美专区日韩专区| 国产精品久久久久久妇女6080 | 中文字幕av一区二区三区免费看 | 亚洲国产精品麻豆| 国产一区在线看| 日本丰满少妇一区二区三区| 欧美激情一区二区三区全黄| 美女脱光内衣内裤视频久久影院| 欧洲色大大久久| 亚洲三级在线免费观看| 国产精品一区二区黑丝| 欧美成人欧美edvon| 午夜精品久久久久久久蜜桃app| 99在线精品观看| 国产片一区二区| 狠狠色2019综合网| 日韩欧美国产电影| 日韩激情一二三区| 欧美日韩国产一区| 亚洲一二三区在线观看| 色欧美乱欧美15图片| 亚洲天堂中文字幕| 99久久精品免费观看| 亚洲国产成人午夜在线一区 | 日韩精品一区二区三区中文不卡| 日本少妇一区二区| 91精品久久久久久久99蜜桃 | 日本精品视频一区二区三区| 亚洲欧美日韩在线不卡| 99这里只有精品| 1024成人网| 91啪九色porn原创视频在线观看| 亚洲欧美在线视频| av电影一区二区| 亚洲另类春色国产| 欧洲av在线精品| 亚洲国产精品精华液网站| 欧美日韩在线综合| 国产精品美女久久久久久久久 | 午夜欧美电影在线观看| 色激情天天射综合网| 尤物视频一区二区| 精品视频在线看| 亚洲男同性恋视频| 欧美日韩在线观看一区二区| 丝袜亚洲另类丝袜在线| 色偷偷成人一区二区三区91| 一区二区三区.www| 日韩精品一区二区三区中文不卡 | 成人精品国产免费网站| 日韩专区一卡二卡| 国产精品久久久久久亚洲毛片| 欧美日韩精品一区二区三区四区| 国产精品亚洲а∨天堂免在线| 亚洲激情图片一区| 国产日韩精品视频一区|