欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國博士人才網 > 博士后招收 > 海外博士后招收 > 英國牛津大學2022年招聘博士后職位(機器學習)

關注微信

英國牛津大學2022年招聘博士后職位(機器學習)

時間:2022-09-20來源:中國博士人才網 作者:佚名

Research Associate

University of Oxford

Description

Research Associate

Department of Biology, 11a Mansfield Road, Oxford, OX1 3SZ and Department of Statistics, 24-29 St Giles', Oxford, OX1 3LB

We are seeking to appoint a Research Associate in Machine Learning with a specialism in natural language understanding or information retrieval. The Research Associate will engage in internationally leading research in the analysis of heterogeneous text-based data at scale; he/she will bring state of the art machine learning to the heart of nature recovery, specifically to track the rapidly evolving field via published scientific articles or web- based text reports. The Researcher will achieve this by advancing state-of-the art deep learning techniques for text analysis and summarization.

The researcher will work in a team of machine learning experts within the Leverhulme Centre for Nature Recovery. The Leverhulme Centre for Nature Recovery (LCNR) is being established to address the challenges of deploying nature-based solutions and delivering effective nature recovery at scale in a way that addresses climate change, supports biodiversity and enhances human wellbeing. In particular, as a Research Associate in Machine Learning for Nature Recovery working closely with the Nature-based Solutions Initiative (Department of Biology), you will be collaborating with a team of multidisciplinary researchers to mine the evidence base for the effectiveness of nature-based solutions to climate change mitigation and adaptation (see www. naturebasedsolutionsevidence.info). Your work will produce state-of-the- art methodologies and algorithms that identify effective ways of working with natural ecosystems within the published literature, track sentiment towards restoration initiatives and filter key scientific reports. Outputs will form the basis of guidance and tools for decision-makers and land managers. Currently, it is hard for decision makers to access the best evidence, partly because that evidence is scattered among 1000s of journals and across several disciplines. Manual systematic reviews are extremely time-consuming and, as a result, poor decisions are being made that affect our futures. Deployment of ML approaches to speed up this process is urgently needed.

You will prepare and publish in high quality academic publications and regularly write and publish articles in peer-reviewed journals and conferences. You will participate actively in research within the LCNR and the Nature-based Solutions Initiative, developing collaborations with others. You will contribute to teaching, including undergraduate and MSc/MPhil courses within the Department of Statistics.

The successful candidate must hold, or be close to completion of, a relevant PhD/DPhil with, ideally, post-qualification research experience in machine learning or statistics with a specialism in natural language understanding or information retrieval. You must have a strong academic publication record concomitant with your experience, and familiarity with the existing literature and research in natural language understanding machine learning. You will have sufficient specialist knowledge to develop novel research questions and methodologies.

The University of Oxford is committed to equality and valuing diversity. All applicants will be judged on merit, according to the selection criteria.

This post is full time and available immediately.

The closing date for applications is 12.00 noon on 28th October 2022, interviews are likely to be scheduled for the week commencing 21st November 2022.

Contact Person: HR Vacancy ID: 159809 Contact Phone: Closing Date &Time: 28-Oct-2022 12:00 Pay Scale: STANDARD GRADE 7 Contact Email: HR@biology.ox.ac.uk Salary (£): Grade 7: £34,308 - £42,155 per annum

為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標題格式:應聘職位名稱+姓名+學歷+專業+中國博士人才網)

中國-博士人才網發布

聲明提示:凡本網注明“來源:XXX”的文/圖等稿件,本網轉載出于傳遞更多信息及方便產業探討之目的,并不意味著本站贊同其觀點或證實其內容的真實性,文章內容僅供參考。

欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          国产精品毛片a∨一区二区三区| 国产成人亚洲综合a∨猫咪| 免费高清成人在线| 91福利小视频| 国产情人综合久久777777| 日av在线不卡| 欧美日韩国产不卡| 国产欧美综合在线观看第十页| 日本va欧美va精品| 欧美人xxxx| 午夜天堂影视香蕉久久| 精品视频一区三区九区| 亚洲一区在线观看免费 | 欧美喷潮久久久xxxxx| 亚洲男人都懂的| 99精品视频在线观看| 中文字幕一区二区三区精华液| 国产馆精品极品| 国产网红主播福利一区二区| 国产成人av福利| 中文字幕av不卡| 97国产一区二区| 亚洲一区二区三区中文字幕| 91官网在线免费观看| 一级女性全黄久久生活片免费| 亚洲精品久久久蜜桃| 色av综合在线| 亚洲18影院在线观看| 欧美日本一道本在线视频| 亚洲一区二区三区中文字幕| 欧美日韩精品综合在线| 日韩av午夜在线观看| 欧美成人一区二区三区片免费| 免费观看久久久4p| 精品国产91乱码一区二区三区 | 韩国在线一区二区| 国产日韩精品一区二区三区| 成人aaaa免费全部观看| 久久久久亚洲蜜桃| 95精品视频在线| 视频一区在线播放| 精品剧情v国产在线观看在线| 国产成人综合在线播放| 国产精品天干天干在线综合| 在线视频观看一区| 成人欧美一区二区三区| 欧美视频完全免费看| 免费成人结看片| 国产精品区一区二区三区| 国产91精品久久久久久久网曝门 | 欧美亚洲高清一区| 青青草精品视频| 日韩免费电影一区| 成人精品免费视频| 亚洲成人av一区| 久久婷婷一区二区三区| 欧美喷潮久久久xxxxx| 秋霞成人午夜伦在线观看| 日韩欧美高清在线| av电影在线不卡| 一区二区欧美在线观看| 精品国产亚洲在线| 99久久精品久久久久久清纯| 水野朝阳av一区二区三区| 精品久久久久久久久久久久久久久| 国产成人精品综合在线观看 | 视频一区二区中文字幕| 国产精品视频一二三| 欧美日韩国产一级| 国产成人欧美日韩在线电影 | 欧美午夜电影在线播放| 国产精品亚洲成人| 视频一区中文字幕国产| 精品福利av导航| 欧美日韩一级视频| 风间由美性色一区二区三区| 国产精品传媒入口麻豆| 亚洲精品在线网站| 亚洲精品一区二区三区蜜桃下载| 91麻豆精品久久久久蜜臀 | 国产乱色国产精品免费视频| 蜜臀av一区二区在线免费观看| 午夜私人影院久久久久| 午夜精品福利一区二区三区av | 夜夜嗨av一区二区三区四季av| 亚洲色图一区二区三区| 亚洲丝袜另类动漫二区| 国产精品女同一区二区三区| 中文无字幕一区二区三区| 国产精品天天摸av网| 国产精品免费观看视频| 中文字幕一区二区三区不卡| 综合网在线视频| 夜夜操天天操亚洲| 视频一区二区不卡| 激情图片小说一区| 丁香婷婷综合色啪| 色狠狠一区二区| 欧美日本免费一区二区三区| 日韩三级免费观看| 欧美精品一区二区蜜臀亚洲| 欧美国产欧美综合| 一区二区免费在线播放| 日本午夜一本久久久综合| 美女视频第一区二区三区免费观看网站| 久久精品国产第一区二区三区| 韩国女主播成人在线| 不卡一卡二卡三乱码免费网站| 在线亚洲一区二区| 日韩欧美国产午夜精品| 国产日韩欧美一区二区三区乱码| 亚洲色图制服诱惑| 日韩高清欧美激情| 国产精品夜夜嗨| 日本乱码高清不卡字幕| 欧美一级在线视频| 国产三级欧美三级日产三级99| 亚洲区小说区图片区qvod| 亚洲福利视频一区二区| 国产综合色产在线精品| 色婷婷久久久综合中文字幕| 欧美精品久久一区二区三区| www国产亚洲精品久久麻豆| 亚洲国产精品传媒在线观看| 亚洲一区二区三区四区五区黄| 久久精品国产久精国产爱| 91亚洲国产成人精品一区二区三| 欧美日韩国产首页在线观看| 国产网站一区二区| 视频一区视频二区在线观看| 国产成人午夜视频| 欧美午夜精品久久久久久孕妇| 亚洲精品一线二线三线无人区| 亚洲免费毛片网站| 国产精品综合av一区二区国产馆| 欧洲亚洲精品在线| 国产欧美日韩另类一区| 亚洲午夜一区二区| 成人网在线播放| 日韩片之四级片| 亚洲色大成网站www久久九九| 久久99久久精品| 在线观看日韩电影| 久久久久9999亚洲精品| 日韩精品电影一区亚洲| 91丨porny丨蝌蚪视频| 欧美精品一区二区三区蜜桃视频| 亚洲制服丝袜在线| 成人aa视频在线观看| 精品国产三级a在线观看| 香蕉成人啪国产精品视频综合网| 成人午夜电影久久影院| 欧美大片在线观看一区| 一级特黄大欧美久久久| 97超碰欧美中文字幕| 国产欧美日韩另类视频免费观看| 日韩av不卡一区二区| 欧美在线观看一二区| 国产精品不卡一区二区三区| 精品一区二区三区在线播放| 欧美久久一二三四区| 亚洲乱码国产乱码精品精小说| 国产精品系列在线播放| 91精品国产综合久久久久久久久久| 亚洲伦理在线免费看| av午夜精品一区二区三区| 国产日韩欧美在线一区| 国产在线一区二区| 日韩欧美一级二级三级| 日韩精品一二三四| 久久精品国产精品青草| 欧美欧美欧美欧美首页| 一片黄亚洲嫩模| 色噜噜狠狠成人中文综合| 国产精品视频第一区| 国产福利91精品一区二区三区| 精品久久久三级丝袜| 秋霞国产午夜精品免费视频| 欧美日韩国产123区| 亚洲福利视频导航| 欧美日韩三级一区二区| 亚洲成av人片| 欧美日韩三级视频| 亚洲超碰97人人做人人爱| 欧美影片第一页| 亚洲人午夜精品天堂一二香蕉| av亚洲精华国产精华精| 亚洲国产精品传媒在线观看| 国产成人av电影在线播放| 国产亚洲欧美日韩日本| 国模一区二区三区白浆| 久久综合五月天婷婷伊人| 国产在线播精品第三| 久久久电影一区二区三区| 国产福利不卡视频| 国产精品乱码一区二区三区软件| 成人成人成人在线视频| 亚洲欧美国产毛片在线| 欧美日韩一区二区在线观看 | 亚洲成人免费视频|