欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

您的位置:中國博士人才網(wǎng) > 博士后招收 > 海外博士后招收 > 德國材料研究與測試研究所2024年招聘博士后職位(材料科學(xué)中的機器學(xué)習(xí))

關(guān)注微信

德國材料研究與測試研究所2024年招聘博士后職位(材料科學(xué)中的機器學(xué)習(xí))

時間:2024-10-08來源:中國博士人才網(wǎng) 作者:佚名

德國材料研究與測試研究所2024年招聘博士后職位(材料科學(xué)中的機器學(xué)習(xí))

德國聯(lián)邦材料研究和測試研究所,簡稱BAM,是一個集材料研究、評估和咨詢的高級科學(xué)技術(shù)研究機構(gòu),其與聯(lián)邦物理技術(shù)研究所(Physikalisch-TechnischeBundesanstalt,PTB),聯(lián)邦地球科學(xué)與自然資源研究所(Bundesanstaltfür Geowissenschaften und Rohstoffe,BGR)同隸屬于德國聯(lián)邦經(jīng)濟事務(wù)和氣候行動部 [2]。BAM總部位于柏林Unterden eichen 87號,另有兩個分支機構(gòu)和一個大型試驗場。該研究所始建于1871年,其前身組織為國家材料測試辦公室以及國家化學(xué)技術(shù)研究所,現(xiàn)有來自約50個國家或地區(qū)的約1600人在BAM工作。

Postdoctoral researcher in machine learning for materials science (m/f/d)

Bundesanstalt für Materialforschung und -prüfung (BAM)

To strengthen our team in the division "eScience" in Berlin‑Steglitz, starting as soon as possible, we are looking for a

Postdoctoral researcher in machine learning for materials science (m/f/d)

Salary group 14 TVöD

Temporary contract for 36 months

Full-time / suitable as part-time employment

The Bundesanstalt für Materialforschung und -prüfung (BAM) is a materials research organization in Germany. Our mission is to ensure safety in technology and chemistry. We perform research and testing in materials science, materials engineering and chemistry to improve the safety of products and processes. At BAM we do research that matters. Our work covers a broad array of topics in the focus areas of energy, infrastructure, environment, materials, and analytical sciences.

Machine learning (ML) has become an influential tool in materials science, significantly enhancing the ability to design and discover new materials, predict material properties, and optimize material processing. Our mission in the eScience group is to develop new machine learning models for various applications in materials science.

Recently, we have created methods for analyzing SAXS measurements, interpreting electrochemical impedance spectroscopy (EIS) data, and predicting crystal stability. Additionally, we have contributed to the development of ML-based universal interatomic potentials, which are gaining popularity for simulating properties of large material structures. At BAM we have a tremendously broad research scope with many fascinating applications for ML methods. This is where your expertise comes in!

As a postdoctoral researcher you will push the boundaries of current ML applications in materials science. You will have the opportunity to develop your own research agenda and collaborate with other research groups to address challenging scientific questions.

As a member of the eScience group, you will be part of an interdisciplinary environment of creative minds. We offer a wide range of challenging tasks at the interface of computer science, data science, and materials research. Our team is renowned for its diversity and vibrant energy. This is your chance to work along international, young, innovative professionals who came together to shape the digitalization of materials research!

Your responsibilities include:

You will be responsible to develop and advance your own machine learning projects and to closely collaborate with materials scientists. In detail, this includes the following aspects:

Development of new machine learning models for applications in materials science

Implementation of machine learning models in pytorch and other relevant software libraries

Preparation of training data as well as development and selection of suitable features

Visualization and interpretation of results from predictions

Supervision of junior researchers

Communication of research results at scientific conferences and in peer-reviewed journals

Your qualifications:

Successfully completed university studies (diploma/master's degree) as well as a very good doctorate in computer science, technical software development, bioinformatics, mathematics, physics, data engineering or comparable

Very good knowledge of software libraries for data science (e.g., PyTorch, PyTorch-Geometric, Pandas, Scitkit-Learn)

Very good knowledge of the theory and practice of modern machine learning methods (e.g., invertible neural networks and graph neural networks)

Very good knowledge of at least one programming language (e.g., Python, Rust, Go)

Good knowledge of methods for visualizing complex data sets

Experience with version control systems (e.g., Git) is desirable

Experience with statistical methods is desirable

Knowledge of methods for processing and analyzing large amounts of data is desirable

Experience with data from the field of materials science or engineering or natural sciences is desirable

Excellent oral and written language skills/expressiveness in English

Excellent communication and interpersonal skills. Goal-oriented and structured way of working, with a strong willingness to cooperate and collaborate with others. Eager to learn and adopt, with strong conceptual, strategic and innovative thinking skills

We offer:

Interdisciplinary research at the interface of politics, economics and society

Engage in pioneering Interdisciplinary research at the intersection of politics, industry, and society

Work with leading national and international networks with universities, research institutions and industrial companies

Access to excellent equipment and infrastructure

Benefit from flexible working hours, mobile working, and strong work-life balance with 30 days of vacation and up to 12 compensatory days off per year

Personal and professional development

Benefit from an appreciative and inclusive atmosphere with a certified family-friendly working culture, regular feedback, and strong support for equality and the integration of severely disabled individuals

Your application:

We welcome applications via the online application form by 23.10.2024. Alternatively, you can also send your application by post, quoting the reference number 221/24-VP.1 to:

Bundesanstalt für Materialforschung und -prüfung

Referat Z.3 – Personal

Unter den Eichen 87

12205 Berlin

GERMANY

www.bam.de

Dr. Benner will be glad to answer any specific questions you may have. Please get in touch via the telephone number +49 30 8104‑3647 and/or by email to Philipp.Benner@bam.de.

BAM promotes professional equality between women and men. We therefore particularly welcome applications from women. At the same time, we strive to reflect social diversity. Every application is therefore welcome, regardless of gender, cultural or social background, religion, ideology or sexual identity.

In addition, BAM has set itself the goal of promoting the professional participation of people with severe disabilities. The fulfillment of the job requirements is considered on an individual basis. Severely disabled persons or persons of equal status will be given preferential consideration if they are equally qualified.

The advertised position requires a low level of physical aptitude.

BAM actively supports the compatibility of work and family and has been certified as a family- and life-phase-conscious employer by the "audit berufundfamilie" since 2015.

為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標(biāo)題格式:應(yīng)聘職位名稱+姓名+學(xué)歷+專業(yè)+中國博士人才網(wǎng))

中國-博士人才網(wǎng)發(fā)布

聲明提示:凡本網(wǎng)注明“來源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點或證實其內(nèi)容的真實性,文章內(nèi)容僅供參考。

相關(guān)文章
欧美另类激情_日本三级视频在线播放_中文字幕在线不卡_国产高清视频在线播放www色

      
      

          日韩专区欧美专区| 婷婷久久综合九色国产成人| 丰满岳乱妇一区二区三区| 成人免费在线观看入口| 欧美日韩高清一区二区不卡| 国产高清精品久久久久| 香蕉成人伊视频在线观看| 久久久99久久| 欧美色图免费看| 成人丝袜高跟foot| 蜜桃久久久久久| 夜夜嗨av一区二区三区网页| 久久久av毛片精品| 欧美精品在线观看播放| 99热精品国产| 国模少妇一区二区三区| 图片区日韩欧美亚洲| 国产精品久久久久久久久久免费看| 欧美电影影音先锋| 91黄视频在线观看| 91婷婷韩国欧美一区二区| 国产盗摄一区二区三区| 欧美aaaaa成人免费观看视频| 亚洲精品国产精品乱码不99| 国产欧美视频一区二区| 欧美大白屁股肥臀xxxxxx| 欧美日韩在线观看一区二区 | 成人高清av在线| 极品美女销魂一区二区三区| 日韩av在线播放中文字幕| 亚洲自拍与偷拍| 亚洲色大成网站www久久九九| 精品美女被调教视频大全网站| 欧美另类videos死尸| 欧美午夜精品一区二区三区| 日本精品一级二级| 91麻豆免费观看| 97久久超碰精品国产| 成人性生交大片免费| 大美女一区二区三区| 国产成人免费9x9x人网站视频| 极品瑜伽女神91| 狠狠狠色丁香婷婷综合激情 | 六月丁香婷婷久久| 蜜桃av一区二区三区| 麻豆精品视频在线观看免费 | 日本成人在线电影网| 日本中文一区二区三区| 日本亚洲最大的色成网站www| 日韩国产一区二| 日本欧美在线观看| 老鸭窝一区二区久久精品| 欧美日韩国产另类不卡| 欧美日韩精品久久久| 欧美老年两性高潮| 日韩亚洲欧美中文三级| 久久综合九色综合欧美亚洲| 国产日韩欧美综合在线| 中文字幕一区二区三区不卡在线| 国产精品电影一区二区三区| 亚洲人123区| 亚洲午夜在线观看视频在线| 性感美女极品91精品| 免费的国产精品| 国产精品一二三区| 波多野洁衣一区| 一本大道久久a久久精品综合| 欧美三级日本三级少妇99| 欧美久久高跟鞋激| 日韩午夜激情免费电影| 国产婷婷一区二区| 亚洲另类色综合网站| 日产精品久久久久久久性色| 国产原创一区二区三区| www.色综合.com| 欧美三级电影网站| 精品三级在线看| 国产精品高潮呻吟| 日韩精品久久理论片| 韩国精品免费视频| 99re成人在线| 日韩美女在线视频| 中文字幕乱码日本亚洲一区二区| 亚洲女厕所小便bbb| 日本成人在线网站| av电影一区二区| 555www色欧美视频| 国产精品你懂的在线欣赏| 夜夜夜精品看看| 国产一区二区在线看| 一本一本大道香蕉久在线精品| 日韩一区二区视频在线观看| 国产精品国产三级国产有无不卡| 五月婷婷综合网| 懂色av一区二区在线播放| 欧美色视频一区| 欧美国产日韩在线观看| 婷婷六月综合网| 风间由美一区二区av101| 欧美日韩午夜精品| 日本一区二区三区dvd视频在线| 亚洲国产欧美在线人成| 粉嫩绯色av一区二区在线观看| 欧美亚洲综合网| 久久精品亚洲乱码伦伦中文| 午夜久久久久久| 波多野洁衣一区| 精品国产91久久久久久久妲己 | 一本大道av一区二区在线播放 | 免费精品视频最新在线| 97精品超碰一区二区三区| 日韩欧美资源站| 亚洲精品亚洲人成人网| 国产成人无遮挡在线视频| 欧美精品v国产精品v日韩精品| 中文字幕亚洲综合久久菠萝蜜| 久久精品国产精品亚洲综合| 欧美色偷偷大香| 国产精品午夜久久| 麻豆国产91在线播放| 欧美日韩免费不卡视频一区二区三区| 国产精品青草综合久久久久99| 久久99精品一区二区三区三区| 欧美日韩国产成人在线91| 有码一区二区三区| av电影在线观看完整版一区二区| 久久奇米777| 久久黄色级2电影| 欧美色图免费看| 亚洲激情成人在线| a亚洲天堂av| 国产精品理论片| 国产麻豆精品在线| 精品日韩av一区二区| 免费的成人av| 欧美一区二区三区在线视频| 亚洲大型综合色站| 日本韩国欧美在线| 亚洲黄色免费网站| 91美女片黄在线观看| 亚洲欧洲三级电影| jizzjizzjizz欧美| 成人欧美一区二区三区黑人麻豆| 国产传媒一区在线| 国产欧美日韩精品a在线观看| 国产福利一区二区三区视频在线| 26uuu国产一区二区三区| 九九九久久久精品| 久久先锋影音av鲁色资源| 国产在线麻豆精品观看| 精品国产人成亚洲区| 国产一区二区精品久久| 国产色综合一区| 成人毛片老司机大片| 国产精品乱人伦| eeuss影院一区二区三区| 亚洲人成影院在线观看| 欧美中文字幕亚洲一区二区va在线| 亚洲综合网站在线观看| 欧美日韩中文精品| 亚洲a一区二区| 日韩欧美在线1卡| 狠狠色丁香久久婷婷综合_中| 日韩精品一区二区三区老鸭窝| 国产一区久久久| 国产精品美女久久久久久2018| 97久久超碰国产精品电影| 一区二区三区在线观看欧美 | 精品一区二区三区在线观看国产 | 日韩美女视频在线| 国内精品免费在线观看| 国产日产欧美一区| 99久久99久久久精品齐齐| 一区二区视频在线| 在线播放一区二区三区| 国产一区二区三区在线观看精品| 国产欧美日韩中文久久| 一本大道久久精品懂色aⅴ| 日韩专区欧美专区| 久久久99久久精品欧美| 一本在线高清不卡dvd| 日韩福利视频导航| 久久精品视频网| 日本韩国精品在线| 老汉av免费一区二区三区| 国产精品青草综合久久久久99| 欧美手机在线视频| 国产一区二区三区四区五区入口| 国产精品不卡在线观看| 欧美日韩国产一级片| 国产一区二三区| 一区二区三区精品视频| 欧美成人欧美edvon| 色综合中文字幕| 免费视频一区二区| 中文字幕制服丝袜成人av | 欧美视频在线一区二区三区| 激情小说欧美图片| 亚洲综合色婷婷| 国产欧美日韩精品在线|